
© 2018 Arm Limited

Ryan Hulguin

ryan.hulguin@arm.com

Debugging and
Profiling with

DDT and Map

SDL Workshop

October 3, 2018

Argonne Leadership Computing Facility2

Agenda

• General Debugging and Profiling Advice

• Arm Software for Debugging and Profiling

• Debugging with DDT

• Profiling with MAP

• Theta Specific Settings

Argonne Leadership Computing Facility3

Debugging

Transforming a broken program to a working one

How? TRAFFIC!

–Track the problem

–Reproduce

–Automate - (and simplify) the test case

–Find origins – where could the “infection” be from?

–Focus – examine the origins

–Isolate – narrow down the origins

–Correct – fix and verify the test case is successful

Argonne Leadership Computing Facility4

Profiling

Profiling is central to understanding and improving application performance.

No

No

Profile
Yes

Yes

Yes

Refine the
Profile

File I/O

Memory

CPU

No

No

Buffers, data formats,
in-memory filesystems

Collectives, blocking,
non-blocking, topology,

load balance

Bandwidth/latency,
cache utilization

Vectors, branches,
integer, floating point

Yes

Identify Hotspots Focus Optimization

50x

10x

5x

2x

Communication

Argonne Leadership Computing Facility5

Performance Improvement Workflow

Get a realistic
test case

Profile your
code

Look for the
significant

What is the
nature of the

problem?

Apply brain to
solve

Think of the
future

© 2018 Arm Limited

Arm Software

Argonne Leadership Computing Facility7

Arm Forge

An interoperable toolkit for debugging and profiling

The de-facto standard for HPC development

– Available on the vast majority of the Top500 machines in the world

– Fully supported by Arm on x86, IBM Power, Nvidia GPUs, etc.

State-of-the art debugging and profiling capabilities

– Powerful and in-depth error detection mechanisms (including memory
debugging)

– Sampling-based profiler to identify and understand bottlenecks

– Available at any scale (from serial to parallel applications running at
petascale)

Easy to use by everyone

– Unique capabilities to simplify remote interactive sessions

– Innovative approach to present quintessential information to users
Very user-friendly

Fully Scalable

Commercially supported

by Arm

Argonne Leadership Computing Facility8

Arm Performance Reports

Characterize and understand the performance of HPC application runs

Gathers a rich set of data

– Analyses metrics around CPU, memory, IO, hardware counters, etc.

– Possibility for users to add their own metrics

Build a culture of application performance & efficiency awareness

– Analyses data and reports the information that matters to users

– Provides simple guidance to help improve workloads’ efficiency

Adds value to typical users’ workflows

– Define application behaviour and performance expectations

– Integrate outputs to various systems for validation (e.g. continuous
integration)

– Can be automated completely (no user intervention)Relevant advice

to avoid pitfalls

Accurate and astute

insight

Commercially supported

by Arm

Argonne Leadership Computing Facility9

Run and ensure application correctness

Combination of debugging and re-compilation

• Ensure application correctness with Arm DDT scalable debugger
• Integrate with continuous integration system.
• Use version control to track changes and leverage Forge’s built-in VCS support.

Examples:
$> ddt --offline aprun –n 48 ./example
$> ddt --connect aprun –n 48 ./example

Argonne Leadership Computing Facility10

Understand application behaviour

Set a reference for future work

• Choose a representative test case with known behavior
• Analyse performance with Arm Performance Reports

Example:

$> perf-report aprun –n 16 mmult_c.exe

Is it
performant?

Argonne Leadership Computing Facility11

Optimize the application for Arm

• Measure all performance aspects with Arm MAP parallel profiler
• Identify bottlenecks and rewrite some code for better performance

Examples:
$> map --profile aprun –n 48 ./example

if not, use the
Arm MAP profiler
for optimization

© 2018 Arm Limited

Debugging with DDT

Argonne Leadership Computing Facility13

Arm DDT – The Debugger

Who had a rogue behaviour ?

– Merges stacks from processes and threads

Where did it happen?

– leaps to source

How did it happen?

– Diagnostic messages

– Some faults evident instantly from source

Why did it happen?

– Unique “Smart Highlighting”

– Sparklines comparing data across processes

Run

with Arm tools

Identify
a problem

Gather info
Who, Where,

How, Why

Fix

Argonne Leadership Computing Facility14

Preparing Code for Use with DDT

As with any debugger, code must be compiled with the debug
flag typically -g

It is recommended to turn off optimization flags i.e. –O0

Leaving optimizations turned on can cause the compiler to

optimize out some variables and even functions making it

more difficult to debug

Argonne Leadership Computing Facility15

Segmentation Fault

In this example, the application crashes with a segmentation error outside of DDT.

What happens when it runs under DDT?

Argonne Leadership Computing Facility16

Segmentation Fault in DDT

DDT takes you to the exact line where Segmentation fault occurred, and you can

pause and investigate

Argonne Leadership Computing Facility17

Invalid Memory Access

The array tab is a 13x13 array, but the application is trying to write a value to

tab(4198128,0) which causes the segmentation fault.

i is not used, and x and y are not initialized

Argonne Leadership Computing Facility18

It works… Well, most of the time

A strange behaviour where the application

“sometimes” crashes is a typical sign of a memory

bug

Arm DDT is able to force the crash to happen

• I am buggy
AND not
buggy. How
about that?

SCHRODIN
BUG !

Argonne Leadership Computing Facility19

Advanced Memory Debugging

Argonne Leadership Computing Facility20

Heap debugging options available

basic
•Detect invalid
pointers passed to
memory functions
(e.g. malloc, free,
ALLOCATE,
DEALLOCATE,...)

check-fence
•Check the end of an
allocation has not
been overwritten
when it is freed.

free-protect
•Protect freed
memory (using
hardware memory
protection) so
subsequent
read/writes cause a
fatal error.

Added
goodiness
•Memory usage,
statistics, etc.

Fast free-blank
•Overwrite the bytes
of freed memory with
a known value.

alloc-blank
•Initialise the bytes of
new allocations with
a known value.

check-heap
•Check for heap
corruption (e.g. due
to writes to invalid
memory addresses).

realloc-copy
•Always copy data to
a new pointer when
re-allocating a
memory allocation
(e.g. due to realloc)

Balanced check-blank
•Check to see if space
that was blanked
when a pointer was
allocated/freed has
been overwritten.

check-funcs
•Check the arguments
of addition functions
(mostly string
operations) for
invalid pointers.

Thorough

See user-guide:

Chapter 12.3.2

Argonne Leadership Computing Facility21

Guard pages (aka “Electric Fences”)

4 kBytes

(typically

)

MEMORY ALLOCATION
GUARD

PAGE

GUARD

PAGE

MEMORY ALLOCATION
GUARD

PAGE

GUARD

PAGE

• A powerful feature…:

• Forbids read/write on guard pages throughout the whole execution

(because it overrides C Standard Memory Management library)

• … to be used carefully:

• Kernel limitation: up to 32k guard pages max (“mprotect fails” error)

• Beware the additional memory usage cost

Argonne Leadership Computing Facility22

Ah… Integer

overflow!

Argonne Leadership Computing Facility23

New Bugs from Latest Changes

Argonne Leadership Computing Facility24

caption

Track Your Changes in a Logbook

Argonne Leadership Computing Facility25

Inspect AVX Registers

© 2018 Arm Limited

Arm DDT Demo

Argonne Leadership Computing Facility27

Five great things to try with Allinea DDT

The scalable print
alternative

Stop on variable change
Static analysis warnings

on code errors

Detect read/write
beyond array bounds

Detect stale memory
allocations

Argonne Leadership Computing Facility28

Arm DDT cheat sheet

Load the environment module

– $ module load forge/18.2.1

Prepare the code

– $ cc -O0 -g myapp.c -o myapp.exe

Start Arm DDT in interactive mode

– $ ddt aprun -n 8 ./myapp.exe arg1 arg2

Or use the reverse connect mechanism

– On the login node:

• $ ddt &

– (or use the remote client) <- Preferred method

– Then, edit the job script to run the following command and submit:

• ddt --connect aprun -n 8 ./myapp.exe arg1 arg2

© 2018 Arm Limited

Profiling with MAP

Argonne Leadership Computing Facility30

Small data files

<5% slowdown

No instrumentation

No recompilation

Arm MAP – The Profiler

Argonne Leadership Computing Facility31

Glean Deep Insight from our Source-Level

Profiler

Track memory usage across
the entire application over time

Spot MPI and OpenMP
imbalance and overhead

Optimize CPU memory and
vectorization in loops

Detect and diagnose I/O
bottlenecks at real scale

Argonne Leadership Computing Facility32

Initial profile of CloverLeaf shows surprisingly unequal I/O

Each I/O operation should take about the same time, but it’s not the case.

Argonne Leadership Computing Facility33

Symptoms and causes of the I/O issues

Sub-optimal file format and surprise buffering.

• Write rate is less than 14MB/s.

• Writing an ASCII output file.

• Writes not being flushed until buffer is full.

• Some ranks have much less buffered data than others.

• Ranks with small buffers wait in barrier for other ranks to finish flushing their buffers.

Argonne Leadership Computing Facility34

Solution: use HDF5 to write binary files

Using a library optimized for HPC I/O improves performance and portability.

Argonne Leadership Computing Facility35

Solution: use HDF5 to write binary files

Using a library optimized for HPC I/O improves performance and portability.

• Replace Fortran write statements with HDF5 library calls.

• Binary format reduces write volume and can improve data precision.

• Maximum transfer rate now 75.3 MB/s, over 5x faster.

• Note MPI costs (blue) in the I/O region, so room for improvement.

Argonne Leadership Computing Facility36

Arm MAP cheat sheet

Load the environment module (manually specify version)

– $ module load forge/18.2.1

Generate the wrapper libraries (static is default on Theta)

– $ make-profiler-libraries --lib-type=static

Unload Darshan module (It wraps MPI calls which cannot be used with MAP)

– $ module unload darshan

Follow the instructions displayed to prepare the code

– $ cc -O3 -g myapp.c -o myapp.exe -Wl,@/path/to/profiler_wrapper_libraries/allinea-profiler.ld

– Edit the job script to run Arm MAP in “profile” mode

– $ map --profile aprun -n 8 ./myapp.exe arg1 arg2

Open the results

– On the login node:

• $ map myapp_Xp_Yn_YYYY-MM-DD_HH-MM.map

– (or load the corresponding file using the remote client connected to the remote system or locally)

Argonne Leadership Computing Facility37

Six Great Things to Try with Allinea MAP

Find the peak memory
use

Fix an MPI imbalance
Remove I/O
bottleneck

Make sure OpenMP
regions make sense

Improve memory
access

Restructure for
vectorization

© 2018 Arm Limited

Theta Specific

Settings

Argonne Leadership Computing Facility39

Configure the remote client

Install the Arm Remote Client

• Go to : https://developer.arm.com/products/software-development-

tools/hpc/downloads/download-arm-forge

Connect to the cluster with the remote client

– Open your Remote Client

– Create a new connection: Remote Launch ➔ Configure ➔ Add

• Hostname: <username>@theta.alcf.anl.gov

• Remote installation directory:

/soft/debuggers/forge-18.2.1-2018-08-07

– ALCF Documentation available at

https://tinyurl.com/debugging-cpw-2018-05

https://developer.arm.com/products/software-development-tools/hpc/downloads/download-arm-forge
https://tinyurl.com/debugging-cpw-2018-05

Argonne Leadership Computing Facility40

Static Linking Extra Steps

To enable advanced memory debugging features, you must link explicitly against

our memory libraries

Simply add the link flags to your Makefile, or however appropriate

lflags = -L/soft/debuggers/ddt/lib/64 -Wl,--undefined=malloc -ldmalloc -Wl,--allow-

multiple-definition

In order to profile, static profiler libraries must be created with the command

make-profiler-libraries --lib-type=static

Instructions to link the libraries will be provided after running the above command

© 2018 Arm Limited

Questions?

4242 © 2018 Arm Limited

Thank You!
Danke!
Merci!
谢谢!
ありがとう!
Gracias!
Kiitos!
감사합니다
धन्यवाद

